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Motivation

In risk management,

liquidity often associated with simple transaction costs

Explains why liquidity adjusted risk measures are of the form

market risk measure + liquidity term

where

market risk measure : obtained from historical market prices
liquidity term . obtained from bid-ask spreads data



Motivation

But Market risk measures obtained from historical market
prices already include a liquidity component

Why ? Liquidity has a direct impact on historical price variations

Our objective in this paper is to extract this liquidity component
from global risk measures computed from historical prices:

global risk measure = market risk measure + liquidity term

where
global risk measure : obtained from historical market prices
market risk measure : obtained from historical market prices



Main contribution

Our liquidity risk measure:

is defined as a intrinsec characteristic of a given asset and
allows simple liquidity rankings

takes into account the dynamic properties of prices (time
varying market risk)

can be defined for different conditional risk measures (VaR,
Expected Shortfall, ...)

can be computed when only historical market prices are
available



Agenda

1. Global risk and global risk-parameter
2. Additive decomposition of global risk
3. Inference

4. Empirical Applications



1. Global risk and Global risk-parameter

15t STEP Volatility modeling

GARCH(1,1) governs the returns process

€ = Ot(eo)nm 7, iid. E’?zz =1

> 2 >
o, b, ) = w, +a,¢,_, +b,0,_,

!

¢ 0, = (a)o,ao,bo) is a volatility-parameter
e captures the volatility persistence in asset returns

* this model can be easily generalized to more complex
conditional volatility models



1. Global risk and Global risk-parameter

2"d STEP Global risk measure

The conditional VaR of ¢, at level o is
P |_5t <-VaR’ (a)J= a

With the previous specification of ¢, the global risk
VaR'(a)=-0,(6,)F, (@)

n
depends on

* the dynamics of the GARCH process through o, (6,)
e the (constant) lower tail of the innovation process



1. Global risk and Global risk-parameter

34 STEP Global risk-parameter (Francq, Zakoian (2012))

AO (scale stability) There exists a function H such that for any 6,
forany K > 0, and any sequence (x;)

Ko(x,, x,, ... ; 0)= o(x, x,, ...;07);  where 6" =H(GK)

We can then concentrate in a single global risk-parameter 6, ,
the 2 dimensions of risk

6’0(,;05 =H (‘909_1:;7_1 (0‘ ))

and obtain the global risk as

VaRrG (a) =0, (‘90(,;04 )




1. Global risk and Global risk-parameter

34 STEP Global risk-parameter (Francq, Zakoian (2012))
In our GARCH(1,1) example ...

¢, = (K*w,. Ka,,b,)
K=-F'(a)

... but A0 is also satisfied for more complex GARCH specification
(power-transformed asymmetric GARCH model)



2. Additive decomposition of global risk

We need the following assumption to identify both global and
market risks from returns

A1l (ldentification assumption) For an infinitely liquid asset, the
innovations of the GARCH(1,1) process are Gaussian

We define the market risk-parameter as
Hé\,la - H(HO,—(I)‘I (0‘))
and the corresponding market risk is

VCIR,M (0{) =0, (6’(?,40: )




2. Additive decomposition of global risk

Interpretation of Al (Identification assumption)

Usual way used to include liquidity shocks (see Duffie, Pan
(1997), An Overview of value at risk)

£ =0, (6’0 )nt +Jump, n, iid.Gaussian
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2. Additive decomposition of global risk

Interpretation of Al (Identification assumption)

Usual way used to include liquidity shocks (see Duffie, Pan
(1997), An Overview of value at risk)

£ =0, (6’0 )nt +Jump, n, iid.Gaussian

One step further (see Meddahi, Mykland (2012), Fat Tails or
Many Small Jumps ?)

£ =0, (490 ) X, +Jump, x, iid.Student

Our approach « LIQUIDITY »
€ = Ot(‘go )Xt = Ot(eo)nt * O;(Ho)(_ n + X )‘




2. Additive decomposition of global risk

A2 (Consistency assumption) 0> ®™'(a)> F'(e) for a sufficient
small a

Definition The liquidity risk-parameter is (for a small enough)
ot = H(0,,-F (a)+ 0 (a))

and the corresponding liquidity risk is

VCZR,L (0{) =0, (gOL,a )

Proposition Under AO-A2,

VaR®(a)=VaR" (a)+ VaR" ()



3. Inference

Two-step approach

15t STEP

N

6, :Gaussian QML estimator of 6, (does not require to know
the distribution of n,)

2"d STEP

&, . nonparametric estimator of the innovation quantile
function&,, obtained from

Final STEP

0° =mlg.-£ ) 6" -nlg.-o") 6° -Hlg -2  +0)




3. Inference

Asymptotic distribution follows from the joint distribution of

6.z,.)

In the general case of power-transformed asymmetric GARCH
model

€ =0, (60)77t’ 7, iid. E77¢2 =1
;s (5;-1' )d T, (_ £, )d + i /3)0]'0';5-]'
=

Of(‘go): Wy +

q
=1

x" =max(x,0), x  =min(x,0)



3.

Inference

We use the following technical assumptions (same as those

D:

required for the Gaussian QML)

By € © and © is compact; v < 0; VA € O, 25?:1‘8] < 1 and
w > w for some w > 0; if P(n;, € I') = 1 for a set I', then I" has a
cardinal |I'| > 2; P[n, > 0] € (0,1); if p > 0, By,(2) has no common
root with Ay, (2) and Ag,_(z). Moreover Ay, (1)+ Ag,_(1) # 0 and
Qg+ + Qog— + Bop # 0.



3. Inference
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3. Inference

1 d0,0) 1 1 90°(0)

o0) a0 o5°(0) 90

If n, admits a continuous and strictly positive density fin a
neigborhood of &, we have

A K,—1 —
(\/Z(en _6,) ]eN(O,Za) S e )
\/z(gn,a - 50:) A’aég()' S,

Let D (0)=
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K, —1 Pq
A’a = 50{ 44 + 2f(§a), Pao = E(nlzl{’?1<§a})_a
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s ) G




3. Inference
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3. Inference
1 d0,0) 1 1 30/
o(0) 90 S0°(0) a6

If n, admits a continuous and strictly positive density fin a
neigborhood of &, we have

Jnlé, -6,) Sl 0,
[\/Z(Sn,a—fa)] N(0,x,) za_[ 4

Let D (0)=
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2. usual
where k,-1  p i.i.d
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3. Inference
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3. Inference
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4. Empirical Applications — stock market data

50 constituants of the Eurostoxx 50 index, as of September 27,
2012 — Blue chips « liquid » stocks

3131 Daily log returns, from September 27, 2000 to September
26, 2012

Using a GARCH(1,1) specification of the conditional volatility, we
estimate for all stocks

VaR®(0.01) VaR™(0.01) VaR*(0.01)

and the corresponding risk parameters

NG AM L
911,0.01 ‘9n,o.01 Hn,O.Ol



4. Empirical Applications — stock market data

2 examples

1 % VaR accuracy interval for BAYER 1 % VaR accuracy interval for MUENCHENER-RUCK
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4. Empirical Applications — stock market data

For different levels of o

Liquidity VaR as function of «

a=0.01%
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—— MUENCHENER-RUCK




4. Empirical Applications — stock market data

For different levels of o

Liquidity VaR as function of «

a=0.01%

-+ BAYER
—— MUENCHENER-RUCK

Low liquidity
_—"risk when
oa>0.01%




4. Empirical Applications — stock market data

A representation of the investment universe in terms of liquidity

risk

Market VaR
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4. Empirical Applications — stock market data

A representation of the investment universe in terms of liquidity

risk

Market VaR
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4. Empirical Applications — hedge funds data

14 Lyxor hedge funds strategy indices, and a composite index —
Big differences in terms of liquidity risk exposure

560 weekly returns, from April 16, 2002 to December 31, 2012

Using a GARCH(1,1) specification of the conditional volatility, we
estimate for all stocks

VaR®(0.01) VaR™(0.01) VaR*(0.01)

and the corresponding risk parameters

NG AM AL
6n,0.01 ‘9n,0.01 0n,0.01



4. Empirical Applications — hedge funds data

Fixed Income versus Statistical Arbitrage: Marginal distribution

Fl Arb Stat Arb
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4. Empirical Applications — hedge funds data

Fixed Income versus Statistical Arbitrage: Marginal distribution

Fl Arb Stat Arb
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Volatility persistence or liquidity issue ?



4. Empirical Applications — hedge funds data

Fixed Income versus Statistical Arbitrage: Conditional distribution

1 % VaR accuracy interval for Stat Arb 1 % VaR accuracy interval for Fl Arb
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4. Empirical Applications — hedge funds data

Fixed Income versus Statistical Arbitrage: Conditional distribution

1 % VaR accuracy interval for Stat Arb 1 % VaR accuracy interval for Fl Arb
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Normal tails: low Fat tails: high
liquidity risk liquidity risk



4. Empirical Applications — hedge funds data

Fixed Income versus Statistical Arbitrage: Conditional distribution

1 % VaR accuracy interval for Stat Arb 1 % VaR accuracy interval for Fl Arb

Normal tails: low Fat tails: high
liquidity risk liquidity risk

Stat Arb: short term strategies on liquid assets (equities)

FI Arb : strategies on illiquid assets (bonds, credit derivatives, ...)



4. Empirical Applications — hedge funds data

CTA Long Term versus CTA Short Term

1 % VaR accuracy interval for CTA ST 1% VaR accuracy interval for CTA LT
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4. Empirical Applications — hedge funds data

CTA Long Term versus CTA Short Term

1 % VaR accuracy interval for CTA ST 1% VaR accuracy interval for CTA LT
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4. Empirical Applications — hedge funds data

CTA Long Term versus CTA Short Term

1 % VaR accuracy interval for CTA ST 1% VaR accuracy interval for CTA LT
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Same strategy ... but on assets with different liquidity
characteristics

CTA ST: liquid assets CTA LT: possibly illiquid assets




4. Empirical Applications — hedge funds data

Composite Index and Liquidity risk diversification
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1 % VaR accuracy interval for COMPOSITE

Market risk

diversification
/

Return and -VaR
25 -15 -05 0.5
|

0 20 40 60 80 100



4. Empirical Applications — hedge funds data

Composite Index and Liquidity risk diversification

1 % VaR accuracy interval for COMPOSITE

Market risk
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Concluding Remarks

* New liquidity risk-parameter
* FEasy two-step estimation procedure

 Meaningfull resuls when applied to illiquid assets

Ongoing research
* Joint estimation of VaR related to different alphas

* Switching mechanism between different liquidity levels



