Liquidity Risk Estimation in Conditional Volatility Models

Darolles S. ^{1,3}, Francq C. ^{1,2}, Le Fol G. ^{1,3}, Zakoian J.M. ^{1,2}

¹ CREST, Laboratoire de Finance Assurance ² Université Lille 3 ³ Université Paris-Dauphine

We are grateful to the Agence Nationale de la Recherche (ANR), which supported this work via the Project ECONOM\&RISK (ANR 2010 blanc 1804 03).

Motivation

In risk management,

liquidity often associated with simple transaction costs

Explains why liquidity adjusted risk measures are of the form

market risk measure + liquidity term

where

market risk measure : obtained from historical market prices

liquidity term : obtained from **bid-ask spreads** data

Motivation

But Market risk measures obtained from **historical market prices** already include a liquidity component

Why? Liquidity has a direct impact on historical price variations

Our objective in this paper is to **extract** this liquidity component from global risk measures computed from historical prices:

global risk measure = market risk measure + liquidity term

where

global risk measure : obtained from historical market prices

market risk measure : obtained from historical market prices

Main contribution

Our liquidity risk measure:

- is defined as a intrinsec characteristic of a given asset and allows simple liquidity rankings
- takes into account the dynamic properties of prices (time varying market risk)
- can be defined for **different** *conditional* **risk measures** (VaR, Expected Shortfall, ...)
- can be computed when **only historical market prices** are available

Agenda

- 1. Global risk and global risk-parameter
- 2. Additive decomposition of global risk
- 3. Inference
- 4. Empirical Applications

1st STEP Volatility modeling

GARCH(1,1) governs the returns process

$$\varepsilon_{t} = \sigma_{t}(\theta_{0})\eta_{t}, \quad \eta_{t} i.i.d. \quad E\eta_{t}^{2} = 1$$

$$\sigma_{t}^{2}(\theta_{0}) = \omega_{0} + a_{0}\varepsilon_{t-1}^{2} + b_{0}\sigma_{t-1}^{2}$$

- $\theta_0 = (\omega_0, a_0, b_0)'$ is a **volatility**-parameter
- captures the volatility persistence in asset returns
- this model can be easily generalized to more complex conditional volatility models

2nd STEP Global risk measure

The *conditional* VaR of ε_t at level α is

$$P_{t-1} \Big[\varepsilon_t < -VaR_t^G(\alpha) \Big] = \alpha$$

With the previous specification of ε_t , the **global risk**

$$VaR_t^G(\alpha) = -\sigma_t(\theta_0)F_{\eta}^{-1}(\alpha)$$

depends on

- the dynamics of the GARCH process through $\sigma_t(\theta_0)$
- the (constant) lower tail of the innovation process

3rd STEP Global risk-parameter (Francq, Zakoian (2012))

A0 (scale stability) There exists a function H such that for any θ , for any K > 0, and any sequence (x_i)

$$K\sigma(x_1, x_2, ...; \theta) = \sigma(x_1, x_2, ...; \theta^*);$$
 where $\theta^* = H(\theta; K)$

We can then concentrate in a single global risk-parameter $\theta_{0,\alpha}$ the 2 dimensions of risk

$$\theta_{0,\alpha}^G = H(\theta_0, -F_{\eta}^{-1}(\alpha))$$

and obtain the global risk as

$$VaR_t^G(\alpha) = \sigma_t(\theta_{0,\alpha}^G)$$

3rd STEP Global risk-parameter (Francq, Zakoian (2012))

In our GARCH(1,1) example ...

$$\theta_{0,\alpha}^{G} = \left(K^{2}\omega_{0}, K^{2}a_{0}, b_{0}\right)$$

$$K = -F_{\eta}^{-1}(\alpha)$$

... but **A0** is also satisfied for more complex GARCH specification (power-transformed asymmetric GARCH model)

We need the following assumption to identify both global and market risks from returns

A1 (Identification assumption) For an infinitely liquid asset, the innovations of the GARCH(1,1) process are Gaussian

We define the *market risk-parameter* as

$$\theta_{0,\alpha}^{M} = H(\theta_{0}, -\Phi^{-1}(\alpha))$$

and the corresponding market risk is

$$VaR_t^M(\alpha) = \sigma_t(\theta_{0,\alpha}^M)$$

Interpretation of A1 (Identification assumption)

Usual way used to include liquidity shocks (see Duffie, Pan (1997), An Overview of value at risk)

$$\varepsilon_t = \sigma_t(\theta_0)\eta_t + Jump, \quad \eta_t i.i.d. Gaussian$$

Interpretation of A1 (Identification assumption)

Usual way used to include liquidity shocks (see Duffie, Pan (1997), An Overview of value at risk)

$$\varepsilon_t = \sigma_t(\theta_0)\eta_t + Jump, \quad \eta_t i.i.d. Gaussian$$

One step further (see Meddahi, Mykland (2012), Fat Tails or Many Small Jumps ?)

$$\varepsilon_t = \sigma_t(\theta_0) \chi_t + Jump, \quad \chi_t i.i.d. Student$$

Interpretation of A1 (Identification assumption)

Usual way used to include liquidity shocks (see Duffie, Pan (1997), An Overview of value at risk)

$$\varepsilon_t = \sigma_t(\theta_0)\eta_t + Jump, \quad \eta_t i.i.d. Gaussian$$

One step further (see Meddahi, Mykland (2012), Fat Tails or Many Small Jumps ?)

$$\varepsilon_t = \sigma_t(\theta_0) \chi_t + Jump, \quad \chi_t i.i.d. Student$$

Our approach

$$\varepsilon_{t} = \sigma_{t}(\theta_{0})\chi_{t} = \sigma_{t}(\theta_{0})\eta_{t} + \sigma_{t}(\theta_{0})(-\eta_{t} + \chi_{t})$$

Interpretation of A1 (Identification assumption)

Usual way used to include liquidity shocks (see Duffie, Pan (1997), An Overview of value at risk)

$$\varepsilon_t = \sigma_t(\theta_0)\eta_t + Jump, \quad \eta_t i.i.d. Gaussian$$

One step further (see Meddahi, Mykland (2012), Fat Tails or Many Small Jumps ?)

$$\varepsilon_t = \sigma_t(\theta_0) \chi_t + Jump, \quad \chi_t i.i.d. Student$$

$$\varepsilon_{t} = \sigma_{t}(\theta_{0})\chi_{t} = \sigma_{t}(\theta_{0})\eta_{t} + \sigma_{t}(\theta_{0})(-\eta_{t} + \chi_{t})$$

A2 (Consistency assumption) $0 > \Phi^{-1}(\alpha) > F_{\eta}^{-1}(\alpha)$ for a sufficient small α

Definition The *liquidity risk-parameter* is (for a small enough)

$$\theta_{0,\alpha}^{L} = H(\theta_{0}, -F_{\eta}^{-1}(\alpha) + \Phi^{-1}(\alpha))$$

and the corresponding liquidity risk is

$$VaR_t^L(\alpha) = \sigma_t(\theta_{0,\alpha}^L)$$

Proposition Under A0-A2,

$$VaR_t^G(\alpha) = VaR_t^M(\alpha) + VaR_t^L(\alpha)$$

Two-step approach

1st STEP

 $\hat{\theta}_n$: Gaussian QML estimator of θ_0 (does not require to know the distribution of η_t)

2nd STEP

 $\xi_{n,\alpha}$: nonparametric estimator of the innovation quantile function ξ_{α} , obtained from

$$\hat{\boldsymbol{\eta}}_{t} = \frac{\boldsymbol{\varepsilon}_{t}}{\boldsymbol{\sigma}_{t}} \left(\hat{\boldsymbol{\theta}}_{n} \right)$$

Final STEP

$$\hat{\theta}_{n,\alpha}^{G} = H\left(\hat{\theta}_{n}, -\xi_{n,\alpha}\right) \quad \hat{\theta}_{n,\alpha}^{M} = H\left(\hat{\theta}_{n}, -\Phi^{-1}\right) \quad \hat{\theta}_{n,\alpha}^{G} = H\left(\hat{\theta}_{n}, -\xi_{n,\alpha} + \Phi^{-1}\right)$$

Asymptotic distribution follows from the joint distribution of

$$\left(\hat{ heta}, \xi_{n,lpha}\right)$$

In the general case of power-transformed asymmetric GARCH model

$$\varepsilon_{t} = \sigma_{t}(\theta_{0})\eta_{t}, \quad \eta_{t} i.i.d. \quad E\eta_{t}^{2} = 1$$

$$\sigma_{t}^{\delta}(\theta_{0}) = \omega_{0} + \sum_{i=1}^{q} \alpha_{0i+} (\varepsilon_{t-i}^{+})^{\delta} + \alpha_{0i-} (-\varepsilon_{t-i}^{-})^{\delta} + \sum_{j=1}^{p} \beta_{0j} \sigma_{t-j}^{\delta}$$

$$x^{+} = \max(x,0), \quad x^{-} = \min(x,0)$$

We use the following technical assumptions (same as those required for the Gaussian QML)

D: $\theta_0 \in \Theta$ and Θ is compact; $\gamma < 0$; $\forall \theta \in \Theta$, $\sum_{j=1}^p \beta_j < 1$ and $\omega > \underline{\omega}$ for some $\underline{\omega} > 0$; if $P(\eta_t \in \Gamma) = 1$ for a set Γ , then Γ has a cardinal $|\Gamma| > 2$; $P[\eta_t > 0] \in (0,1)$; if p > 0, $\mathcal{B}_{\theta_0}(z)$ has no common root with $\mathcal{A}_{\theta_0+}(z)$ and $\mathcal{A}_{\theta_0-}(z)$. Moreover $\mathcal{A}_{\theta_0+}(1) + \mathcal{A}_{\theta_0-}(1) \neq 0$ and $\alpha_{0q,+} + \alpha_{0q,-} + \beta_{0p} \neq 0$.

Let
$$D_t(\theta) = \frac{1}{\sigma_t(\theta)} \frac{\partial \sigma_t(\theta)}{\partial \theta} = \frac{1}{\delta} \frac{1}{\sigma_t^{\delta}(\theta)} \frac{\partial \sigma_t^{\delta}(\theta)}{\partial \theta}$$

If η_1 admits a continuous and strictly positive density f in a neighborhood of ξ_{α} , we have

$$\begin{pmatrix} \sqrt{n} (\hat{\theta}_n - \theta_0) \\ \sqrt{n} (\xi_{n,\alpha} - \xi_\alpha) \end{pmatrix} \rightarrow N(0, \Sigma_\alpha) \quad \Sigma_\alpha = \begin{pmatrix} \frac{\kappa_4 - 1}{4} J^{-1} & \lambda_\alpha \delta \overline{\theta}_0 \\ \lambda_\alpha \delta \overline{\theta}_0' & \varsigma_\alpha \end{pmatrix}$$

where

$$\lambda_{\alpha} = \xi_{\alpha} \frac{K_4 - 1}{4} + \frac{p_{\alpha}}{2f(\xi_{\alpha})}, \quad p_{\alpha} = E(\eta_1^2 1_{\{\eta_1 < \xi_{\alpha}\}}) - \alpha$$

$$\xi_{\alpha} = \xi_{\alpha}^2 \frac{K_4 - 1}{4} + \frac{\xi_{\alpha} p_{\alpha}}{f(\xi_{\alpha})} + \frac{\alpha(1 - \alpha)}{f^2(\xi_{\alpha})}$$

Let
$$D_t(\theta) = \frac{1}{\sigma_t(\theta)} \frac{\partial \sigma_t(\theta)}{\partial \theta} = \frac{1}{\delta} \frac{1}{\sigma_t^{\delta}(\theta)} \frac{\partial \sigma_t^{\delta}(\theta)}{\partial \theta}$$

If η_1 admits a continuous and strictly positive density f in a neighborhood of ξ_{α} , we have

$$\begin{pmatrix} \sqrt{n} \left(\hat{\theta}_{n} - \theta_{0} \right) \\ \sqrt{n} \left(\xi_{n,\alpha} - \xi_{\alpha} \right) \end{pmatrix} \rightarrow N(0, \Sigma_{\alpha}) \quad \Sigma_{\alpha} = \begin{pmatrix} \kappa_{4} - 1 \\ 4 \end{pmatrix} J^{-1} \quad \lambda_{\alpha} \delta \overline{\theta}_{0} \\ \lambda_{\alpha} \delta \overline{\theta}_{0} \quad \zeta_{\alpha}$$

$$\lambda_{\alpha} = \xi_{\alpha} \frac{K_{4} - 1}{4} + \frac{p_{\alpha}}{2f(\xi_{\alpha})}, \quad p_{\alpha} = E(\eta_{1}^{2} 1_{\{\eta_{1} < \xi_{\alpha}\}}) - \alpha$$

$$\xi_{\alpha} = \xi_{\alpha}^{2} \frac{K_{4} - 1}{4} + \frac{\xi_{\alpha} p_{\alpha}}{f(\xi)} + \frac{\alpha(1 - \alpha)}{f^{2}(\xi)}$$

Let
$$D_t(\theta) = \frac{1}{\sigma_t(\theta)} \frac{\partial \sigma_t(\theta)}{\partial \theta} = \frac{1}{\delta} \frac{1}{\sigma_t^{\delta}(\theta)} \frac{\partial \sigma_t^{\delta}(\theta)}{\partial \theta}$$

If η_1 admits a continuous and strictly positive density f in a neighborhood of ξ_{α} , we have

$$\begin{pmatrix} \sqrt{n} \left(\hat{\theta}_{n} - \theta_{0} \right) \\ \sqrt{n} \left(\xi_{n,\alpha} - \xi_{\alpha} \right) \end{pmatrix} \rightarrow N(0, \Sigma_{\alpha}) \quad \Sigma_{\alpha} = \begin{pmatrix} \frac{K_{4} - 1}{4} J^{-1} & \lambda_{\alpha} \delta \overline{\theta}_{0} \\ \lambda_{\alpha} \delta \overline{\theta}_{0} & \Sigma_{\alpha} \end{pmatrix}$$

where

$$\lambda_{\alpha} = \xi_{\alpha} \frac{\kappa_{4} - 1}{4} + \frac{p_{\alpha}}{2f(\xi_{\alpha})}, \quad p_{\alpha} = E(\eta_{1}^{2} 1_{\{\eta_{1} < \xi_{\alpha}\}}) - \alpha$$

$$= \kappa_{1} - 1, \quad \xi_{1} - \rho, \quad \alpha = 0$$
1. does
not
depend
on θ_{0}

$$S_{\alpha} = \xi_{\alpha}^{2} \frac{K_{4} - 1}{4} + \frac{\xi_{\alpha} p_{\alpha}}{f(\xi_{\alpha})} + \frac{\alpha(1 - \alpha)}{f^{2}(\xi_{\alpha})}$$

Let
$$D_t(\theta) = \frac{1}{\sigma_t(\theta)} \frac{\partial \sigma_t(\theta)}{\partial \theta} = \frac{1}{\delta} \frac{1}{\sigma_t^{\delta}(\theta)} \frac{\partial \sigma_t^{\delta}(\theta)}{\partial \theta}$$

If η_1 admits a continuous and strictly positive density f in a neighborhood of ξ_{α} , we have

$$\begin{pmatrix} \sqrt{n} (\hat{\theta}_{n} - \theta_{0}) \\ \sqrt{n} (\xi_{n,\alpha} - \xi_{\alpha}) \end{pmatrix} \rightarrow N(0, \Sigma_{\alpha}) \quad \Sigma_{\alpha} = \begin{pmatrix} \frac{\kappa_{4} - 1}{4} J^{-1} & \lambda_{\alpha} \delta \overline{\theta}_{0} \\ \lambda_{\alpha} \delta \overline{\theta}_{0} & \Sigma_{\alpha} \end{pmatrix}$$

where

$$\begin{pmatrix}
\sqrt{n}(\hat{\theta}_{n} - \theta_{0}) \\
\sqrt{n}(\xi_{n,\alpha} - \xi_{\alpha})
\end{pmatrix} \rightarrow N(0, \Sigma_{\alpha}) \quad \Sigma_{\alpha} = \begin{pmatrix}
\frac{\kappa_{4} - 1}{4} J^{-1} & \lambda_{\alpha} \delta \overline{\theta}_{0} \\
\lambda_{\alpha} \delta \overline{\theta}_{0} & \underline{\zeta_{\alpha}}
\end{pmatrix}$$

$$\lambda_{\alpha} = \xi_{\alpha} \frac{\kappa_{4} - 1}{4} + \frac{p_{\alpha}}{2f(\xi_{\alpha})}, \quad p_{\alpha} = E(\eta_{1}^{2} 1_{\{\eta_{1} < \xi_{\alpha}\}}) - \alpha$$

$$\zeta_{\alpha} = \xi_{\alpha}^{2} \frac{\kappa_{4} - 1}{4} + \frac{\xi_{\alpha} p_{\alpha}}{f(\xi_{\alpha})} + \frac{\alpha(1 - \alpha)}{f^{2}(\xi_{\alpha})}$$
2. usual i.i.d. case

positive or negative

For
$$X \in \{G, M, L\}$$

$$\sqrt{n} (\hat{\theta}_{n,\alpha}^X - \theta_{0,\alpha}^X) \rightarrow N(0, \Delta_{\alpha}^X)$$

$$\Delta_{\alpha}^{L} = \frac{\kappa_{4} - 1}{4} A_{L} \left(J^{-1} - \delta^{2} \frac{\xi_{\alpha}^{2}}{\left\{ -\xi_{\alpha} + \Phi^{-1}(\alpha) \right\}^{2}} \overline{\theta}_{0} \overline{\theta}_{0}^{'} \right) A_{L}$$

$$+ \delta^{2} \left\{ -\xi_{\alpha} + \Phi^{-1}(\alpha) \right\}^{2(\delta - 1)} \left\{ 2\lambda_{\alpha} \Phi^{-1}(\alpha) + \frac{\alpha(1 - \alpha)}{f^{2}(\xi_{\alpha})} \right\} \overline{\theta}_{0} \overline{\theta}_{0}^{'}$$

For
$$X \in \{G, M, L\}$$

$$\sqrt{n} \left(\hat{\theta}_{n,\alpha}^X - \theta_{0,\alpha}^X \right) \rightarrow N \left(0, \Delta_{\alpha}^X \right)$$

$$\Delta_{\alpha}^{L} = \frac{\kappa_{4} - 1}{4} A_{L} \left(J^{-1} - \delta^{2} \frac{\xi_{\alpha}^{2}}{\left\{ -\xi_{\alpha} + \Phi^{-1}(\alpha) \right\}^{2}} \overline{\theta_{0}} \overline{\theta_{0}}^{'} \right) A_{L}$$

$$+ \delta^{2} \left\{ -\xi_{\alpha} + \Phi^{-1}(\alpha) \right\}^{2(\delta - 1)} \left\{ 2\lambda_{\alpha} \Phi^{-1}(\alpha) + \frac{\alpha(1 - \alpha)}{f^{2}(\xi_{\alpha})} \right\} \overline{\theta_{0}} \overline{\theta_{0}}^{'}$$

Only the density at ξ_{α} must be estimated

For
$$X \in \{G, M, L\}$$

$$\sqrt{n} (\hat{\theta}_{n,\alpha}^X - \theta_{0,\alpha}^X) \rightarrow N(0, \Delta_{\alpha}^X)$$

$$\Delta_{\alpha}^{L} = \frac{\kappa_{4} - 1}{4} A_{L} \left(J^{-1} - \delta^{2} \frac{\xi_{\alpha}^{2}}{\left\{ -\xi_{\alpha} + \Phi^{-1}(\alpha) \right\}^{2}} \overline{\theta_{0}} \overline{\theta_{0}}^{'} \right) A_{L}$$

$$+ \delta^{2} \left\{ -\xi_{\alpha} + \Phi^{-1}(\alpha) \right\}^{2(\delta - 1)} \left\{ 2\lambda_{\alpha} \Phi^{-1}(\alpha) + \frac{\alpha(1 - \alpha)}{f^{2}(\xi_{\alpha})} \right\} \overline{\theta_{0}} \overline{\theta_{0}}^{'}$$

Only the density at ξ_{α} must be estimated

$$Va\hat{R}_{t}^{L}(\alpha) = \sigma_{t}(\hat{\theta}_{n,\alpha}^{L})$$

50 constituants of the Eurostoxx 50 index, as of September 27, 2012 – Blue chips « liquid » stocks

3131 Daily log returns, from September 27, 2000 to September 26, 2012

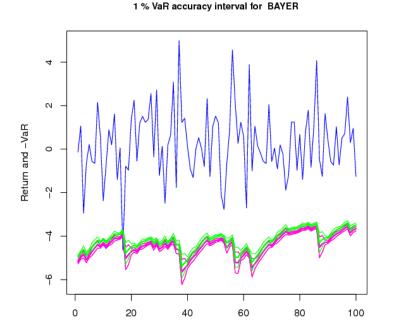
Using a **GARCH(1,1) specification** of the conditional volatility, we estimate for all stocks

$$VaR_{t}^{G}(0.01) \quad VaR_{t}^{M}(0.01) \quad VaR_{t}^{L}(0.01)$$

and the corresponding risk parameters

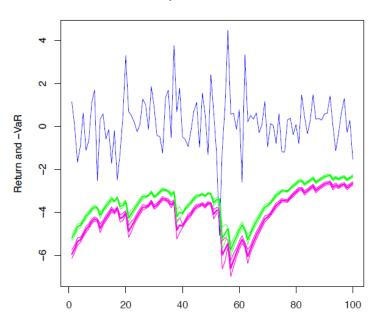
$$\hat{ heta}_{n,0.01}^{G}$$
 $\hat{ heta}_{n,0.01}^{M}$ $\hat{ heta}_{n,0.01}^{L}$

2 examples



VaR parameter: (ω,α,β) : Global= (0.47,0.5,0.9), Market= (0.43,0.45,0.9)

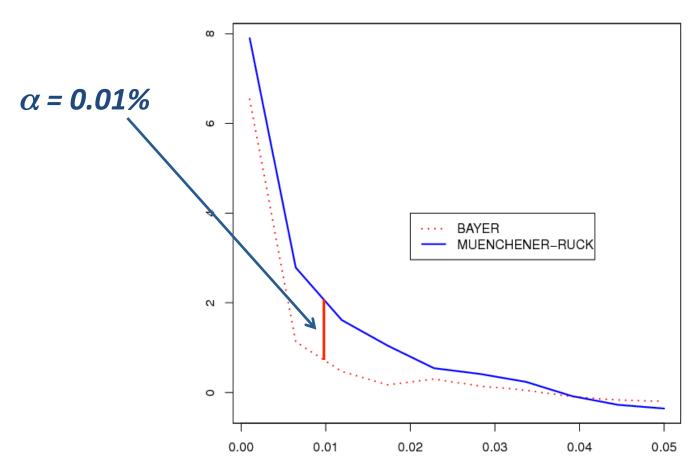
1 % VaR accuracy interval for MUENCHENER-RUCK



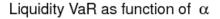
VaR parameter: (ω, α, β) : Global= (0.38,0.86,0.87), Market= (0.28,0.65,0.87)

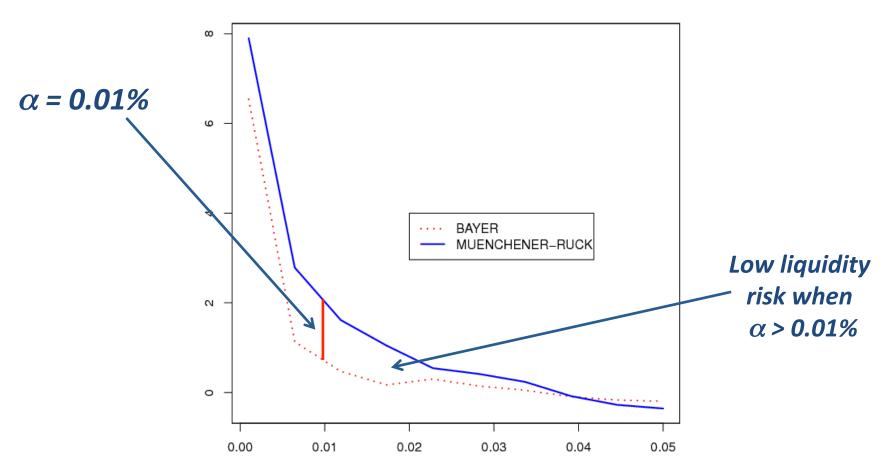
For different levels of lpha

Liquidity VaR as function of $\,\alpha\,$

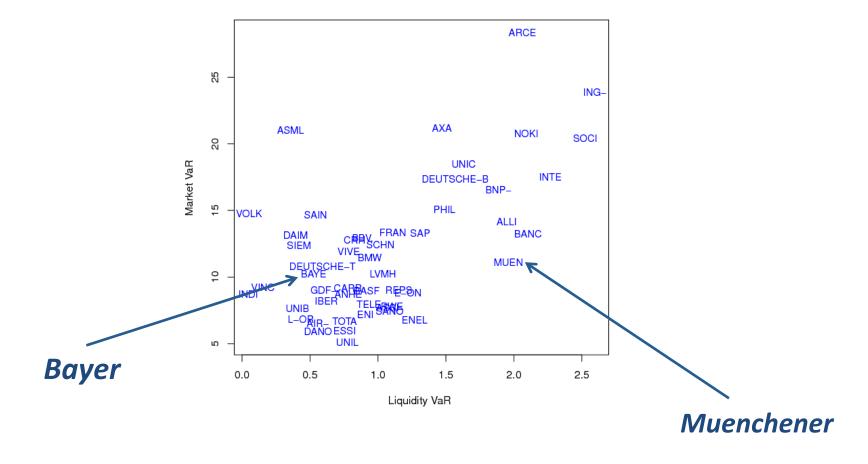


For different levels of lpha

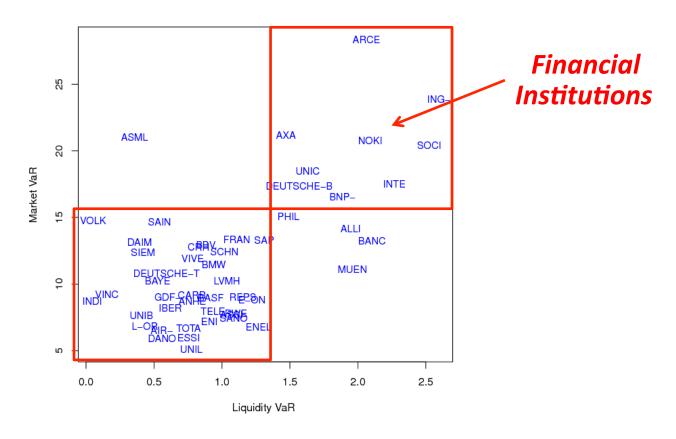




A representation of the investment universe in terms of liquidity risk



A representation of the investment universe in terms of liquidity risk



14 Lyxor hedge funds strategy indices, and a composite index – **Big differences in terms of liquidity risk exposure**

560 weekly returns, from April 16, 2002 to December 31, 2012

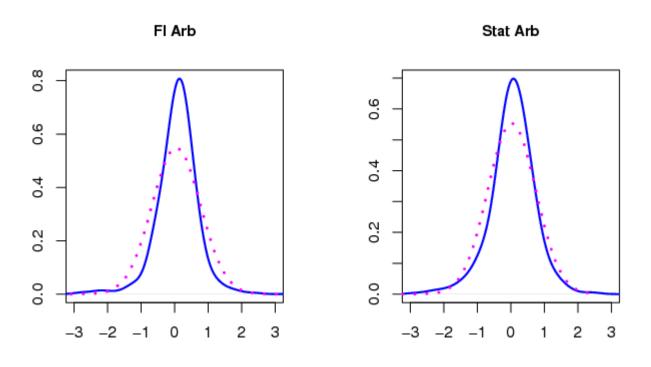
Using a **GARCH(1,1) specification** of the conditional volatility, we estimate for all stocks

$$VaR_{t}^{G}(0.01) \quad VaR_{t}^{M}(0.01) \quad VaR_{t}^{L}(0.01)$$

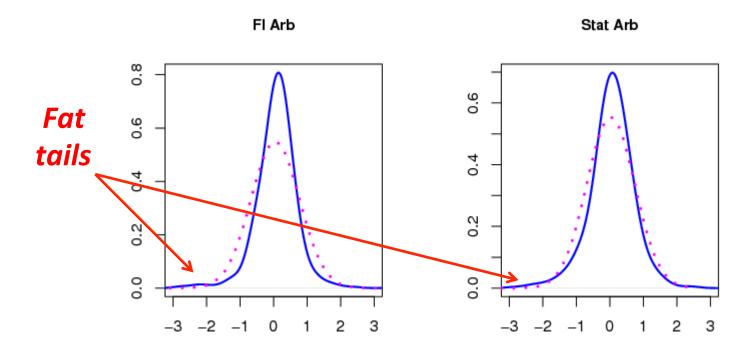
and the corresponding risk parameters

$$\hat{\theta}_{n,0.01}^{G}$$
 $\hat{\theta}_{n,0.01}^{M}$ $\hat{\theta}_{n,0.01}^{L}$

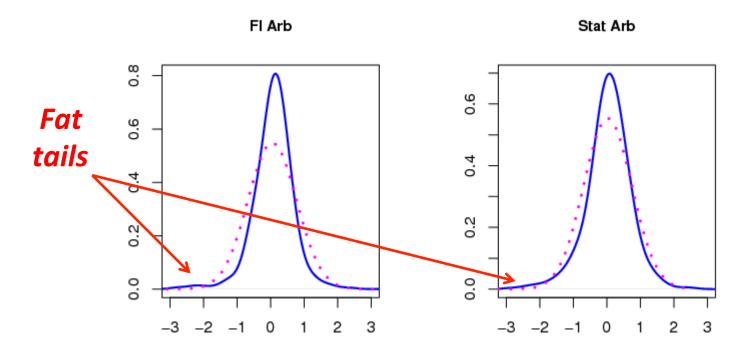
Fixed Income versus Statistical Arbitrage: Marginal distribution



Fixed Income versus Statistical Arbitrage: Marginal distribution

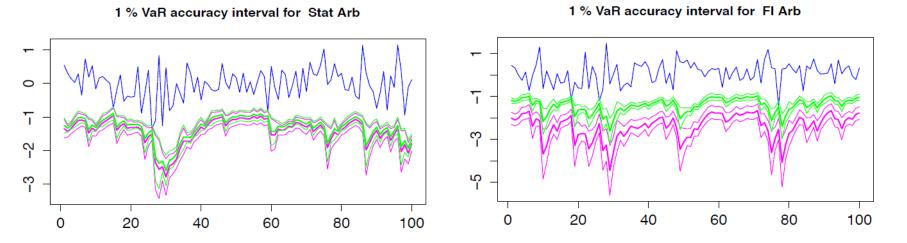


Fixed Income versus Statistical Arbitrage: Marginal distribution



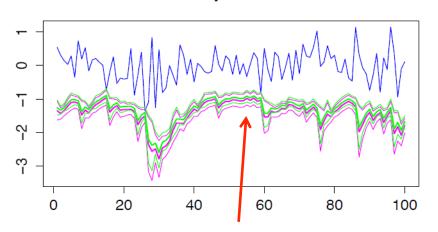
Volatility persistence or liquidity issue?

Fixed Income versus Statistical Arbitrage: Conditional distribution



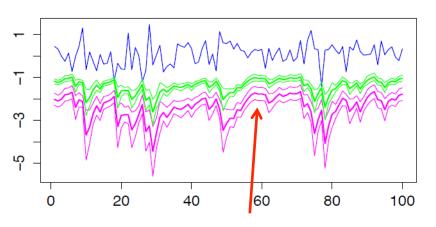
Fixed Income versus Statistical Arbitrage: Conditional distribution

1 % VaR accuracy interval for Stat Arb



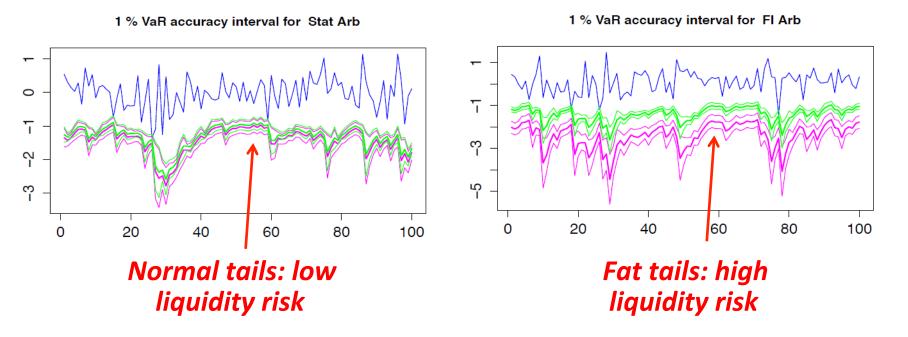
Normal tails: low liquidity risk

1 % VaR accuracy interval for FI Arb



Fat tails: high liquidity risk

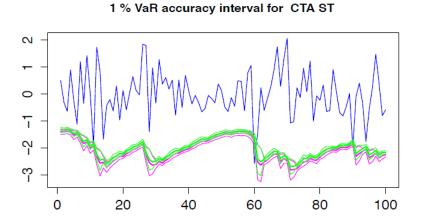
Fixed Income versus Statistical Arbitrage: Conditional distribution

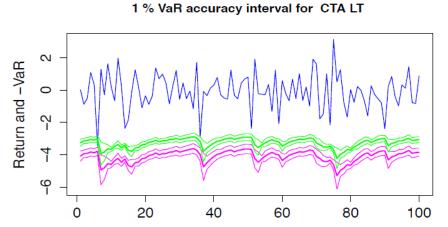


Stat Arb: short term strategies on liquid assets (equities)

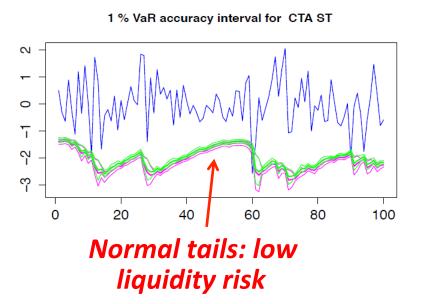
FI Arb: strategies on illiquid assets (bonds, credit derivatives, ...)

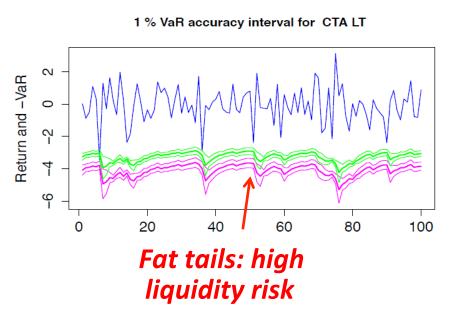
CTA Long Term versus CTA Short Term



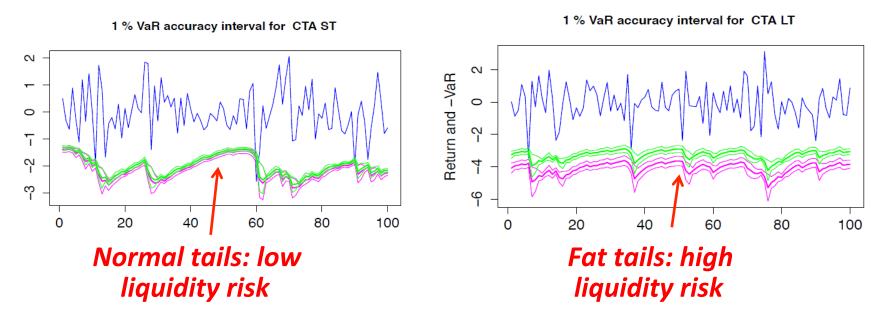


CTA Long Term versus CTA Short Term





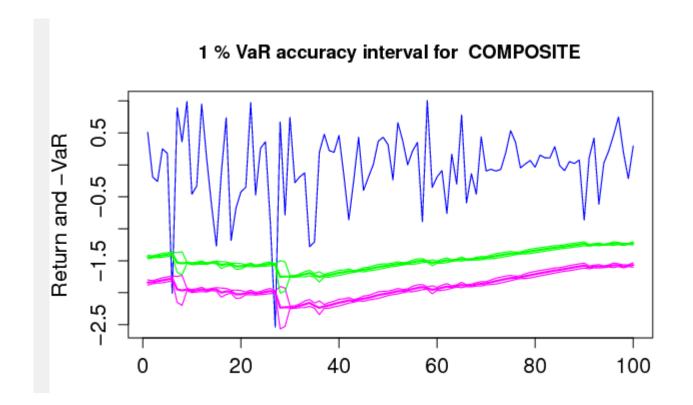
CTA Long Term versus CTA Short Term



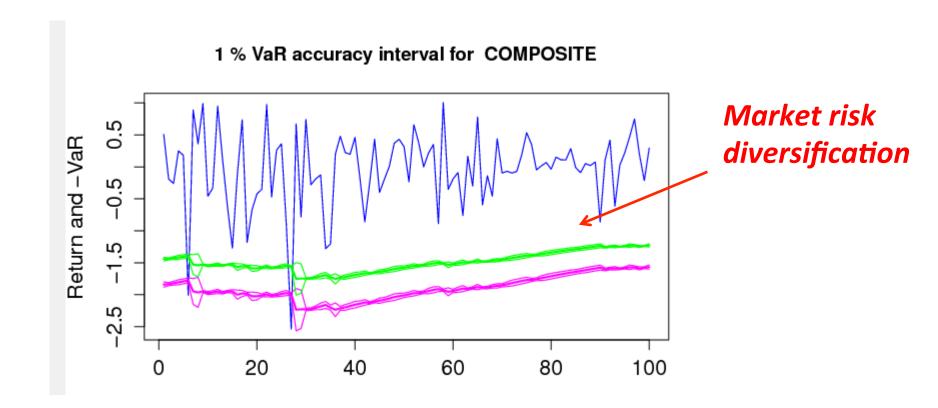
Same strategy ... but on assets with different liquidity characteristics

CTA ST: liquid assets CTA LT: possibly illiquid assets

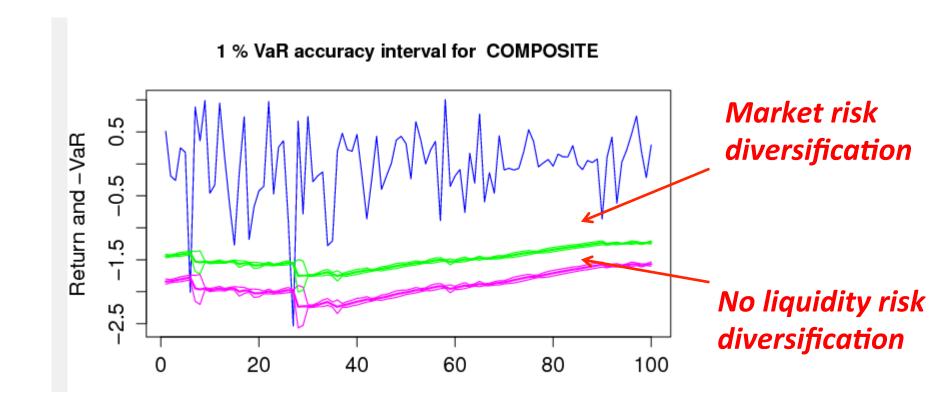
Composite Index and Liquidity risk diversification



Composite Index and Liquidity risk diversification



Composite Index and Liquidity risk diversification



Concluding Remarks

- New liquidity risk-parameter
- Easy two-step estimation procedure
- Meaningfull resuls when applied to illiquid assets

Ongoing research

- Joint estimation of VaR related to different alphas
- Switching mechanism between different liquidity levels